Real Time System

% A real time system has well-defined, fixed time constraints. Processing must be done
within the defined constraints, or the system will fail.
A real time system functions correctly only if it returns the correct result within its time
constraints.

This system is used when we require quick response against input.
In this system, task is completed within specified time.

It is classified in following two types-

Hard Real Time System: In hard Real Time system task will be fail if response time
against input 1s more than specified time.

Soft Real Time System: In Soft Real Time system inaccurate result will be found if
response time against input is more than specified time.

2. Real Time Purpose Operating System (RTOS):

Operating Systems, which are deployed in embedded systems
demanding real-time response

Deterministic in execution behavior. Consumes only known amount
oftime for kernel applications

Implements scheduling policies for executing the highest priority
task/application always

Implements policies and rules concerning time-critical allocation of
a system’s resources

Windows CE, QNX, VxWorks , MicroC/OS-II etc are examples of Real
Time Operating Systems (RTOS)

Thread: Light weight Process is called Thread.

Thread Vs Process

Thread Process
Light weight Process Heavy Weight Process
Thread Switching does not need interaction with OS Process Switching needs interaction with OS
Thread can share Code segment, Data Section, File | Processes own their separate Code segment, Data
Descriptor, address space, heap etc Section, File Descriptor, address space, heap etc

Threads has its own

Regster

Program
Counter

Stack

Threads of same process share

Data Section

Code Segment

Heap

Address Space

File Descnptor

Message Queue

Note: Local variables of the Process are stored in Stack, Global variables are stored in Data Section and dynamically
created variables are stored in Heap.

Time Sharing or Multi-Tasking System

It 1s also called fair share system or multi programming with round robin System.
It 1s extension of multi Programming System.

In this system CPU switches between processes so quickly that it gives an 1llusion that all
executing at same time.

This system can be used to handle multiple interactive tasks.

Advantages
v" High CPU utilization.
v Less waiting time, response time etc.

v Useful in current scenario when load is high.

Disadvantages
v Process scheduling is difficult.
v" Main memory management is required.

v Problems like memory fragmentation may occur.

Multiprocessing System

% A system 1s called multiprocessing system if two or more CPU within a single computer
communicate with each other and share system bus memory and I/O devices.
% It provides true parallel execution of processes.

Type of Multiprocessing system

1. Asymmetric Multiprocessing System: In this system, each processor 1s assigned
a specific task. A master processor controls the system. The other processors
called slave processors either look to master for instruction or have predefined
tasks 1.e. master-slave relationship hold in this type of system.

2. Symmetric Multiprocessing System: In this system each processor performs all
tasks within the operating system i.e. all processor are peers, no master-slave
relationship exists between processors.

Advantages:

v" Increased Throughput: By increasing number of processors, we expect to get more
work done in less time.
v Economy of Scale: multiprocessor system can cost less than equivalent multiple single

processor systems.

Increased Reliability: Since work is distributed among several processors; failure of one
processor will not halt the system only slow it down.

Disadvantages
v It is complex system.
v" Process scheduling is difficult in this system.

v" It required large size of Main memory.

CPU SCHEDULING

Removal of the running process from the CPU and selection of another process on the basis of

particular strategy 1s called CPU Scheduling.

Non Preemptive Vs Preemptive

Non Preemptive Scheduling or Cooperative Scheduling: In non-preemptive scheduling, once
the CPU 1s allocated to a process, keeps the CPU until it releases the CPU either by terminating
or by switching to the waiting state 1.e. when a process reaches to running state it can either

switches to waiting state or terminates.

Preemptive Scheduling:Preemptive scheduling allows a process to switch from running state to
ready state or waiting state to ready state. In Preemptive scheduling, once the CPU is allocated to

a process, process can release the CPU before terminating the process.

Inter process communication

Inter process communication (IPC) is a mechanism which allows processes to communicate each other
and synchronize their actions. Processes can communicate with each other using these two ways:

. Shared Memory
2. Message passing

Shared Memory Method

Shared memory requires processes to share some variable and 1t completely depends on how programmer
will implement 1t.

One way of communication using shared memory can be- Suppose process| and process2 are executing
simultaneously and they share some resources or use some information from other process, processl
generate information about certain computations or resources being used and keeps 1t as a record In
shared memory. When process2 need to use the shared information, it will check in the record stored in
shared memory and take note of the information generated by process] and act accordingly. Processes can
use shared memory for extracting information as a record from other process as well as for delivering any
specific information to other process.

Messaging Passing Method
In this method, processes communicate with each other without using any kind of of shared memory. If
two processes pl and p2 want to communicate with each other, they proceed as follow:

. Establish a communication link (if a link already exists, no need to establish it again.)

Start exchanging messages using basic primitives.
We need at least two primitives:
— send(message, destinaion) or send(message)
— receive(message, host) or receive(message)

Sending
Process

Message

passing
ENOGTS

Processid Message

The message size can be of fixed size or of variable size. If it is of fixed size, it is easy for OS designer
but complicated for programmer and if it is of variable size then it is easy for programmer but
complicated for the OS designer. A standard message can have two parts: header and body.
The header partis used for storing Message type, destination id, source id, and message length and
control information. The control information contains information like what to do if runs out of buffer
space, sequence number, priority. Generally, message is sent using FIFO style.

Semaphore

A semaphore S is an integer variable that, apart from initialization, is accessed only through two standard

atomic operations: wait () and signal (). The wait () operation is also called P and signal () 1s also called
V.

Definition of wait ()

wait(S) |
while(S <= 0);
S--
}

Definition of signal ()

signal(S)
{

j

All modifications to the integer value of the semaphore in the wait () and signal () operations must be
executed indivisibly. That 1s, when one process modifies the semaphore value, no other process can
simultancously

Application of Semaphore

1. Solving Multi process Critical Section Problem
2. Resource allocation among various processes
3. Ordering Execution of processes.

Tvpes of Semaphore

1. Binary Semaphore - This 1s also known as mutex lock. It can have only two values — 0 and 1.
Its value 1s mitialized to 1. It 1s used to implement solution of critical section problem with multiple
Processes.

Counting Semaphore - Its value can range over an unrestricted domain. It 1s used to control
access to a resource that has multiple instances.

Interrupt routine

An interrupt routine, also known as an Interrupt Service Routine (ISR), is a
specialized function in computer systems that handles asynchronous
events or interrupts. When an external event occurs, such as hardware
signaling or timer expiration, the processor suspends its current task and
jumps to the ISR to address the event promptly. ISRs are typically short
and focused on handling the interrupt as efficiently as possible to
minimize system latency. In real-time operating systems (RTOS), ISRs are
crucial for maintaining responsiveness and meeting timing requirements
In embedded systems. They often prioritize interrupts based on their
urgency and can preempt lower-priority tasks to ensure timely handling

of critical events. Proper management of interrupt routines is essential
for the reliable operation of real-time systems.

Message Queues

The message queue is a buffer used in non-shared memory environments, where tasks communicate
by passing messages to each other rather than accessing shared variables.

Tasks share a common buffer pool.

The message queue is an unbounded FIFO queue protected from concurrent access by different
threads.

Many tasks can write messages into the queue, but only one can read messages from the queue at a
time.

The reader waits on the message queue until there is a message to process.

Messages can be of any size.

Message Queue Message

Send | Received
»

Message

Mailboxes

Tasks can also communicate by sending messages via mailboxes
Mutual exclusion of the mailbox is handled by the operating system
A mailbox is a special memory location that one or more tasks can use to transfer data, or generally for

synchronization

The tasks rely on the kernel to allow them to
« Write to the mailbox via a post operation
Read from it via a pend operation

Direct access to any mailbox is not allowed

A mailbox can only contain one message

Mailbox

POST >Ix‘:ﬁm =

Generally, three types of operations can be performed on a mailbox
» |nitialize (with or without a message)
* Deposit a message (POST)

* Wait for a message (PEND)

Optional timeout; number of
- clock ticks the the task will wait

for a message

The pipe() system call in OS facilitates interprocess communication by creating a unidirectional
communication channel between two processes.

It allows one process to write data into the pipe, while another process can read from it.

This mechanism is particularly useful for achieving coordination and data transfer between processes,
such as in pipelines or filters.

Pipes are a fundamental building block for implementing more complex communication and
synchronization mechanisms in Unix-like OS Linux and macOS.

They provide a way for processes to exchange data without the need for shared memory or explicit file
operations, enhancing the modularity and efficiency of process communication in a multitasking

environment.

R

Priority Inversion Priority Inheritance

In priarity inversion, a higher-priority process

. o It is @ method that is used to eliminate the problems of Priority inversion.
is preempted by a lower-priority process.

) .) o With the help of this, a process scheduling algorithm increases the
It is the inversion of the priorities of the two o) o
priority of a process, to the maximum priority of any other process
processes .
waiting for any resource.

It can cause a system to malfunction in our Priority inheritance can lead to poorer worst-case behavior when there

system. are nested locks.

Priority inversions can lead to the Priority inheritance can be implemented such that there is no penalty

implementation of corrective measures. when the locks do not contend,

To deal with the problem of priority

inversion We can have several techniques It is the basic technique at the application level for managing priority

such as . .
inversion.

Priority ceiling, Random boosting, etc.

‘1| VxWorks

* VxWorks is a real-time operating system (or RTOS) developed
as proprietary software by Wind River Systems. Firstreleasedin 1987,
VxWorksis designed foruse in embedded systems requiring real-
time, deterministic performance and in many cases, safety and security
certification forindustries such as aerospace, defense, medical devices,
industrial equipment, robotics, energy, transportation, network
infrastructure, automotive, and consumer electronics

https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Wind_River_Systems
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Deterministic_system
https://en.wikipedia.org/wiki/Aerospace_engineering
https://en.wikipedia.org/wiki/Arms_industry

* Micro-Controller Operating Systems (MicroC/0S, stylized as uC/0S,
or Micrium OS) is areal-time operating system (RTOS) designed by Jean J.
Labrosse in 1991. It is a priority-based preemptive real-time kernel
for microprocessors, written mostly in the programming language C. It is
Intended for use in embedded systems.

RTLinux is a hard realtime real-time operating system (RTOS) microkernel that
runs the entire Linux operating system as a fully preemptive process. The hard
real-time property makes it possible to control robots, data acquisition systems,
manufacturing plants, and other time-sensitive instruments and machines from

RTLinux applications.

Made By :- AKTU WALA (Satyam Sahu)

*Website :- Extramarkslibrary.com
.- Aktuwala.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: VxWorks
	Slide 22
	Slide 23: Made By :- AKTU WALA (Satyam Sahu)

